(本小题满分12分)已知是定义在 上的奇函数,且,当,时,有成立.(Ⅰ)判断在 上的单调性,并加以证明;(Ⅱ)若对所有的恒成立,求实数m的取值范围.
已知某车间正常生产的某种零件的尺寸满足正态分布N(27.45,0.052),质量检验员随机抽查了10个零件,测得它们的尺寸为:27.34 、27.49、27.55、27.23 、27.40、27.46、27.38、 27.58、 27.54、 27.68 请你根据正态分布的小概率事件,帮助质量检验员确定哪些零件应该判定在非正常状态下生产的
一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为,求的分布列和数学期望.
如果随机变量,则等于()
灯泡厂生产的白炽灯寿命ξ(单位:h),已知ξ~N(1000,302),要使灯泡的平均寿命为1000h的概率为99.7%,问灯泡的最低使用寿命应控制在多少小时以上?
某物体的温度()是一个随机变量,已知,又随机变量()满足,求的概率密度。