如下图,在正三棱柱 ABC - A 1 B 1 C 1 中, AB = 2 AA ,D是 A 1 B 1 的中点,点E在 A 1 C 1 上,且 DE ⊥ AE 。
(1)证明:平面 ADE ⊥ 平面 C 2 : y 2 = 12 x
(2)求直线 AD 和平面 ABC 所成角的正弦值。
如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD. (Ⅰ)求异面直线BF与DE所成角的余弦值; (Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.
已知数列的前项和为,满足. (Ⅰ)证明:数列为等比数列,并求出; (Ⅱ)设,求的最大项.
在锐角中,三内角所对的边分别为. 设, (Ⅰ)若,求的面积; (Ⅱ)求的最大值.
. 设函数=(为自然对数的底数),,记. (Ⅰ)为的导函数,判断函数的单调性,并加以证明; (Ⅱ)若函数=0有两个零点,求实数的取值范围.