(本小题满分13分)定长为3的线段AB两端点A、B分别在轴,轴上滑动,M在线段AB上,且(1)求点M的轨迹C的方程;(2)设过且不垂直于坐标轴的动直线交轨迹C于A、B两点,问:线段上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。
(本小题满分14分)如图,椭圆和圆,已知椭圆过点,焦距为2. (1)求椭圆的方程;(2)椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点,直线与椭圆的另一个交点分别是点.设的斜率为,直线斜率为,求的值.
(本小题满分14分)如图,在三棱柱中,为棱的中点,,.求证:(1) 平面; (2)∥平面.
(本小题满分14分)设平面向量=,,,.(1)若,求的值; (2)若,求函数的最大值,并求出相应的值.
选修4-5:不等式选讲设函数.(Ⅰ)当a=5时,求函数f(x)的定义域;(Ⅱ)若函数f(x)的定义域为R,试求a的取值范围.
选修4-4:坐标系与参数方程已知曲线C的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(Ⅰ)求曲线C的直角坐标方程与直线l的普通方程;(Ⅱ)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.