已知在递增等差数列中,,成等比数列,数列的前n项和为,且.(1)求数列、的通项公式;(2)设,求数列的前和.
已知☉O:x2+y2=1和定点A(2,1),由☉O外一点P(a,b)向☉O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系.(2)求线段PQ长的最小值.(3)若以P为圆心所作的☉P与☉O有公共点,试求半径取最小值时☉P的方程.
过点Q(-2,)作圆O:x2+y2=r2(r>0)的切线,切点为D,且|QD|=4.(1)求r的值.(2)设P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,且l交x轴于点A,交y轴于点B,设=+,求||的最小值(O为坐标原点).
已知圆O1的方程为x2+(y+1)2=6,圆O2的圆心坐标为(2,1).若两圆相交于A,B两点,且|AB|=4,求圆O2的方程.
如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.(1)求证:F<0.(2)若四边形ABCD的面积为8,对角线AC的长为2,且·=0,求D2+E2-4F的值.(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O,G,H是否共线,并说明理由.
如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程.(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由.