(本小题满分13分)某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(Ⅰ)若建立函数模型制定奖励方案,试用数学语言表述公司对奖励函数模型的基本要求;(Ⅱ)现有两个奖励函数模型:(1)y=;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?
(本小题满分12分)已知的最小正周期为.(1)当时,求函数的最小值;(2)在中,若,且2sin2B=cosB+cos(A-C),求sinA的值.
(本小题满分10分)选修4—5,不等式选讲已知函数 (1) 解关于的不等式 (2)若函数的图象恒在函数的上方,求实数的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程以直角坐标系的原点为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线过点P,且倾斜角为,圆C以M为圆心,4为半径。(1)求直线的参数方程和圆C的极坐标方程。(2)试判定直线与圆C的位置关系。
(本小题满分10分)选修4-1:几何证明选讲 如图,的角平分线的延长线交它的外接圆于点(Ⅰ)证明:∽△;(Ⅱ)若的面积,求的大小.
(本小题满分12分)已知函数.(1)求在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线相切,求t的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线相切?(只需写出结论)