(本小题满分14分)如图,已知中,,,⊥
平面,、分别是、的中点.
(1)求证:平面⊥平面;
(2)设平面平面,求证;
(3)求四棱锥B-CDFE的体积V.
如图,在正方体ABCD-A1B1C1D1中.
(1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D;
(2)若M为A1B上的一动点,求证:DM∥平面D1B1C.
(本小题满分14分)如图,是边长为的等边三角形,是等腰直角三角形,,平面平面,且平面,.
(1)证明:平面;
(2)证明:.
(本小题满分14分)如图,在四棱锥P - ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:
(1)PA∥平面MDB;
(2)PD⊥BC.
(本小题满分12分)如图,在长方体中,为的中点.
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在点,使得∥平面?若存在,求出的长;若不存在,说明理由.
(本小题满分15分)如图,在四棱锥中,底面是平行四边形,平面,点分别为的中点,且,,.
(Ⅰ)证明:平面;
(Ⅱ)求直线与平面所成角的正切值.
如图,在三棱柱中,四边形都为矩形.
(I)设D是AB的中点,证明:直线平面;
(II)在中,若,证明:直线平面.
如图,四棱锥中,四边形是正方形,若分别是线段的中点.
(1)求证:||底面;
(2)若点为线段的中点,平面与平面有怎样的位置关系?并证明。