高中数学

如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分16分)在四棱锥中,平面是正三角形,的交点恰好是中点,又,点在线段上,且

(1)求证:
(2)求证:∥平面
(3)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱柱中,侧棱底面 ,底面是直角梯形,中点.

(Ⅰ)证明:平面
(Ⅱ)若,求平面和平面所成角(锐角)的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为.

(1)求证://平面
(2)求的长;
(3)在线段上是否存在点,使直线垂直,如果存在,求线段的长,如果不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设P、Q是单位正方体AC1的面AA1D1D、面A1B1C1D1的中心.
 
(1)证明:PQ∥平面AA1B1B;
(2)求异面直线PQ和所成的角.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在七面体ABCDMN中,四边形ABCD是边长为2的正方形,平面ABCD,平面ABCD,且

(1)在棱AB上找一点Q,使QP//平面AMD,并给出证明;
(2)求平面BNC与平面MNC所成锐二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知在四棱锥中,底面是矩形,且平面分别是线段的中点.

(1)判断并说明上是否存在点,使得平面?若存在,求出的值;若不
存在,请说明理由;
(2)若与平面所成的角为,求二面角的平面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在四棱锥中,底面是边长为的菱形,分别为的中点.

(1)求证:
(2)求二面角的大小的正弦值;
(3)求点到面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.

(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如下图所示:在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(Ⅰ)求证:AC⊥BC1
(Ⅱ)求证:AC1∥平面CDB1

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形所在的平面,分别是的中点.

(1)求证:平面
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,分别为的中点,

(1)证明:
(2)求面与面所成锐角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱C1的中点,且CF⊥AB,AC=BC.

(1)求证:CF∥平面AEB1;
(2)求证:平面AEB1⊥平面ABB1A1

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,分别为棱的中点.

(1)求证:∥平面
(2)求CB1与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1,侧棱AA1⊥平面ABC,O、D、E分别是棱AB、A1B1、AA1的中点,点F在棱AB上,且

(1)求证:EF∥平面BDC1
(2)求证:平面OCC1D⊥平面ABB1 A1
(3)求二面角E-BC1-D的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题