如图,矩形所在的平面,、分别是、的中点.(1)求证:平面;(2)求证:.
如图,在矩形ABCD中,AB = 4,BC = 3,沿对角线AC把矩形折成二面角D-AC-B,并且D点在平面ABC内的射影落在AB上. (1)证明:AD⊥平面DBC; (2)求三棱锥D-ABC的体积.; (3)若在四面体D-ABC内有一球,当球的体积最大时,球的半径是多少?
设数列满足:,,. (Ⅰ)求的通项公式及前项和; (Ⅱ)已知是等差数列,为前项和,且,,求.
如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点. 求证:(1)平面EFG∥平面ABC. (2)BC⊥SA.
已知直线, (1)若直线过点(3,2)且,求直线的方程; (2)若直线过与直线的交点,且,求直线的方程.
已知函数,实数满足,设. (1)当函数的定义域为时,求的值域; (2)求函数关系式,并求函数的定义域; (3)求的取值范围.