(文科)(本题满分14分)设函数f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点(,2). (Ⅰ)求实数m的值; (Ⅱ)求函数f(x)的最小值及此时x值的集合(理科)(本题满分14分)已知函数f(x)=ex-kx,x∈R (Ⅰ)若k=e,试确定函数f(x)的单调区间 (Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1. (1)求数列{an}和{bn}的通项公式;( 6分) (2)设cn=,求数列{cn}的前n项和Tn.
某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?
某单位在抗雪救灾中,需要在A,B两地之间架设高压电线,测量人员在相距6 000 m的C、D两地(A,B,C,D在同一平面上)测得∠ACD=45°,∠ADC=75°,∠BCD=30°,∠BDC=15°(如图).假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约是A、B两地之间距离的1.2倍,问施工单位至少应该准备多长的电线(精确到0.1 m)?(参考数据:≈1.4,≈1.7,≈2.6)
已知函数 (1)求的最小正周期;( 6分) (2)当时,求的最小值以及取得最小值时的集合.
已知数列{an}满足a1= ,且有an-1-an-4an-1an="0," (1)求证:数列 为等差数列; (2)试问a1a2是否是数列中的项?如果是, 是第几项;如果不是,请说明理由.