(文科)(本题满分14分)设函数f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点(,2). (Ⅰ)求实数m的值; (Ⅱ)求函数f(x)的最小值及此时x值的集合(理科)(本题满分14分)已知函数f(x)=ex-kx,x∈R (Ⅰ)若k=e,试确定函数f(x)的单调区间 (Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围
为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。
设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)的个数为(). (Ⅰ)求、的值及的表达式; (Ⅱ)设,为的前项和,求.
已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,其值为正,而当x∈(-∞,-2)∪(6,+∞)时,其值为负. (Ⅰ)求实数a,b的值及函数f(x)的表达式; (Ⅱ)设F(x)=-f(x)+4(k+1)x+2(6k-1),问k取何值时,函数F(x)的值恒为负值?
.若非零函数对任意实数均有¦(a+b)=¦(a)·¦(b),且当时,. (1)求证:; (2)求证:为减函数; (3)当时,解不等式
.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F. (1)证明 PA//平面EDB; (2)证明PB⊥平面EFD; (3)求二面角C-PB-D的大小.