(文科)(本题满分14分)设函数f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点(,2). (Ⅰ)求实数m的值; (Ⅱ)求函数f(x)的最小值及此时x值的集合(理科)(本题满分14分)已知函数f(x)=ex-kx,x∈R (Ⅰ)若k=e,试确定函数f(x)的单调区间 (Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围
已知,. (1)若的单调减区间是,求实数a的值; (2)若对于定义域内的任意x恒成立,求实数a的取值范围; (3)设有两个极值点, 且.若恒成立,求m的最大值.
已知定点A(1,0),B (2,0) .动点M满足, (1)求点M的轨迹C; (2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F (E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点的距离为2。 (1)求椭圆的方程; (2)斜率的直线与椭圆相交于不同的两点M,N满足,求直线l的方程。
设函数. (1)求f(x)的单调区间和极值; (2)关于的方程f(x)=a在区间上有三个根,求a的取值范围.
已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.