在△ABC中,BC=a,AC=b,a,b是方程的两个根, 且。求:(1)角C的度数; (2)AB的长度。
已知,若命题“ p且q”和“¬p”都为假,求的取值范围.
设函数. (1)若求的单调区间及的最小值; (2)若,求的单调区间; (3)试比较与的大小.其中,并证明你的结论.
给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.若椭圆C的一个焦点为,其短轴上的一个端点到距离为. (Ⅰ)求椭圆及其“伴随圆”的方程; (Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值; (Ⅲ)过椭圆C“伴随圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.
已知函数为自然对数的底数) (Ⅰ)当时,求函数的极值; (Ⅱ)若函数在上单调递减,求的取值范围.
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点. (1)求证:平面. (2)求二面角的余弦值.