( 12分)如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且是圆的直径。(1)求证:平面(2)设,在圆柱内随机选取一个点,记该点取自三棱 柱的概率为(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值。
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。 (Ⅰ)求C1的直角坐标方程; (Ⅱ)当C1与C2有两个公共点时,求实数的取值范围.
已知,若矩阵所对应的变换把直线变换为它自身。 (Ⅰ)求矩阵A; (Ⅱ)求矩阵A的逆矩阵。
已知函数 (Ⅰ)求处的切线方程; (Ⅱ)若不等式恒成立,求的取值范围; (Ⅲ)数列,数列满足的前项和为,求证:
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求在的延长线上,在的延长线上,且对角线过点.已知米,米。 (1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围; (2)若(单位:米),则当,的长度分别是多少时,花坛的面积最大?并求出最大面积.
(本小题满分13分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。 (1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数的数学期望. (2)若抽取后不放回,抽完红球所需次数为的分布列及期望.