已知函数.(1)当时,求的值;(2)当时,求的最大值和最小值。
(本题满分14分) 在平面直角坐标系中,已知圆心在直线上,半径为的圆C经过坐标原点O.(1)求圆C的方程;(2)是否存在直线与圆C交于不同的两点A、B,且线段AB的中点恰在抛物线上,若存在请求出m的值,若不存在请说明理由.
(本题满分14分)如图,圆锥的顶点是S,底面中心为O.OC是与底面直径AB垂直的一条半径,D是母线SC的中点.(1)求证:BC与SA不可能垂直.(2)设圆锥的高为4,异面直线AD与BC所成角的余弦值为,求圆锥的体积.
(本题满分12分)已知A(2,0),B(0,2),C(),且0<<.(1)若的夹角;(2)若的值.
已知函数满足,是不为的实常数。(1)若当时,,求函数的值域;(2)在(1)的条件下,求函数的解析式;(3)若当时,,试研究函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由。
已知函数满足,是不为的实常数。(1)若函数是周期函数,写出符合条件的值;(2)若当时,,且函数在区间上的值域是闭区间,求的取值范围;(3)若当时,,试研究函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由。