设函数f(x)对任意x,y,都有,且时,f(x)<0,f(1)=-2.⑴求证:f(x)是奇函数;⑵试问在时,f(x)是否有最值?如果有求出最值;如果没有,说出理由.
用数学归纳法证明:
已知函数(1)当a=2时,求曲线在点处的切线方程;(2)求函数的极值.
已知曲线的极坐标方程是,以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)写出曲线的普通方程,并说明它表示什么曲线;(2)过点作倾斜角为的直线与曲线相交于两点,求线段的长度和的值.
.(1)求的单调区间;(2)求函数在上的最值.
求证:.