已知数列满足().(1)若数列是等差数列,求它的首项和公差;(2)证明:数列不可能是等比数列;(3)若,(),试求实数和的值,使得数列为等比数列;并求此时数列的通项公式.
已知函数.(Ⅰ)讨论函数在定义域内的极值点的个数;(Ⅱ)若函数在处取得极值,且对,恒成立,求实数的取值范围;(Ⅲ)当且时,试比较的大小。
水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为:(1)该水库的蓄水量小于50的时期称为枯水期,以表示第月份(),问:同一年内哪些月份是枯水期?(2)求一年内哪个月份该水库的蓄水量最大,并求最大蓄水量。(取计算)
设函数在原点相切,若函数的极小值为;(1) (2)求函数的递减区间。
求由曲线与,,所围成的平面图形的面积。
已知函数.求函数在上的最大值和最小值。