已知数列满足().(1)若数列是等差数列,求它的首项和公差;(2)证明:数列不可能是等比数列;(3)若,(),试求实数和的值,使得数列为等比数列;并求此时数列的通项公式.
已知函数(1)求 (2)当的值域。
在中,分别是的对边长,已知. (Ⅰ)若,求实数的值; (Ⅱ)若,求面积的最大值.
设函数。 (1)写出函数的最小正周期及单调递减区间; (2)当时,函数的最大值与最小值的和为,求的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积。
已知,设P:函数在R上单调递减,Q:不等式的解集为R,如果P和Q有且仅有一个正确,求的取值范围
求的值