已知函数.(Ⅰ)讨论函数在定义域内的极值点的个数;(Ⅱ)若函数在处取得极值,且对,恒成立,求实数的取值范围;(Ⅲ)当且时,试比较的大小。
已知定义在上的奇函数满足,且在上是增函数. 又函数(1)证明:在上也是增函数;(2)若,分别求出函数的最大值和最小值;(3)若记集合,,求.
关于函数的性质叙述如下:①;②没有最大值;③在区间上单调递增;④的图象关于原点对称.问:(1)函数符合上述那几条性质?请对照以上四条性质逐一说明理由.(2)是否存在同时符合上述四个性质的函数?若存在,请写出一个这样的函数;若不存在,请说明理由.
已知函数(1)求的定义域并判断它的奇偶性;(2)求的值域.
已知函数.(1)求函数在上的单调递增区间;(2)当时,恒成立,求实数的取值范围.
已知,,.(1)求的值;(2)求的值.