(本小题满分14分)设函数.(1)求函数的单调增区间;(2)若不等式在恒成立,求实数m的取值范围.(3)若对任意的,总存在,使不等式成立,求实数m的取值范围.
已知矩阵M =,N =,试求曲线在矩阵MN变换下的函数解析式.
在数列中,,且对任意的,成等比数列,其公比为.(1)若=2(),求;(2)若对任意的,,,成等差数列,其公差为,设.①求证:成等差数列,并指出其公差;②若=2,试求数列的前项的和.
已知函数(1)求函数在点处的切线方程;(2)求函数单调递增区间;(3)若存在,使得是自然对数的底数),求实数的取值范围.
已知向量.(1)若,且,求的值;(2)定义函数,求函数的单调递减区间;并求当 时,函数的值域.
如图,在正三棱柱ABC-A1B1C1中,A1A=AC,D,E,F分别为线段AC,A1A,C1B的中点. (1)证明:EF∥平面ABC; (2)证明:C1E⊥平面BDE.