设 ( 1 + x ) n = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n , n ⩾ 4 , n ∈ N * .已知 a 3 2 = 2 a 2 a 4 .
(1)求 n的值;
(2)设 ( 1 + 3 ) n = a + b 3 ,其中 a , b ∈ N * ,求 a 2 - 3 b 2 的值.
(本小题满分10分)如图,的半径垂直于直径,为上一点,的延长线交于,过点的切线交的延长线于。 (1)求证:; (2)若的半径为,.求:的长。
(本小题满分12分) 已知函数. (1)求函数的最大值; (2)求证: (3)当时,求证:.
(本小题满分12分)过椭圆的右焦点作斜率的直线交椭圆于两点,且与共线. (1)求椭圆的离心率; (2)设为椭圆上任意一点,且,证明:为定值。
(本小题满分12分)如图,正方形所在平面与等腰三角形所在平面相交于平面. (1)求证:平面; (2)设是线段上一点,当直线与平面所成角的正弦值为时,试确定点的位置.
(本小题满分12分)为了促进学生的全面发展,贵州某中学重视学生社团文化建设,2014年该校某新生确定争取进入曾获团中央表彰的“海济社”和“话剧社”。已知该同学通过考核选拨进入两个社团成功与否相互独立,根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“海济社”的概率小于进入“话剧社”的概率。 (1)求该同学分别通过选拨进入“海济社”的概率和进入“话剧社”的概率; (2)学校根据这两个社团的活动安排情况,对进入“海济社”的同学增加1个校本选修课学分,对进入“话剧社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修加分分数的分布列和数学期望。