((本小题满分12分)在平面直角坐标系xOy中,点P(x,y)为动点,已知点A(,0),B(-,0),直线PA与PB的斜率之积为定值-.(Ⅰ)求动点P的轨迹E的方程;(Ⅱ)若F(1,0),过点F的直线l交轨迹E于M、N两点,以MN为对角线的正方形的第三个顶点恰在y轴上,求直线l的方程.
(本小题满分12分)设数列的前项和为,且,. (Ⅰ)求数列的通项公式; (Ⅱ)若数列为等差数列,且,公差为.当时,比较与的大小.
(本小题满分14分)已知函数. (1)当时,求函数图象在点处的切线方程; (2)当时,讨论函数的单调性;
(本小题满分13分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R (1)写出年利润(万元)关于年产量(千元)的函数解析式; (2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。(注:年利润=年销售收入-年总成本)
(本小题满分12分)设函数(其中),且的最小正周期为. (1)求的值; (2)将函数图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,求函数的单调增区间.
(本小题满分12分)已知函数的图象过点(0,3),且在和上为增函数,在上为减函数. (1)求的解析式; (2)求在R上的极值.