设函数(1)若,求函数在上的最小值;(2)若函数在存在单调递增区间,试求实数的取值范围;(3)求函数的极值点.
已知函数,钝角(角对边为)的角满足.(1)求函数的单调递增区间;(2)若,求.
已知数列的前项和为满足.(1)函数与函数互为反函数,令,求数列的前项和;(2)已知数列满足,证明:对任意的整数,有.
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.(1)当点在圆上运动时,求点的轨迹方程;(2)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.(1)求水面宽;(2)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?(3)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?
如图,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).(1)求证:;(2)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;(3)求二面角的正弦值.