学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.(1)求水面宽;(2)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?(3)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?
求抛物线y2=2x与直线y=4-x围成的平面图形的面积.
对于函数f(x)=bx3+ax2-3x. (1)若f(x)在x=1和x=3处取得极值,且f(x)的图象上每一点的切线的斜率均不超过2sintcost-2cos2t+,试求实数t的取值范围; (2)若f(x)为实数集R上的单调函数,且b≥-1,设点P的坐标为(a,b),试求出点P的轨迹所围成的图形的面积S.
已知f(x)=ax2+bx+c,且f(-1)=2,f′(0)=0,f(x)dx=-2,求a、b、c的值.
求下列定积分的值 (1) dx; (2)已知f(x)=,求f(x)dx的值.
求定积分dx.