已知函数,钝角(角对边为)的角满足.(1)求函数的单调递增区间;(2)若,求.
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X).
设p:实数x满足,其中,命题实数x满足(Ⅰ)若且为真,求实数的取值范围;(Ⅱ)若是的充分不必要条件,求实数的取值范围.
(本小题14分)已知函数.(1)若,求曲线在处切线的斜率;(2)求的单调区间;(3)设,若对任意,均存在,使得,求的取值范围。
(本小题满分12分) 设的极小值为,其导函数的图像开口向下且经过点,.(Ⅰ)求的解析式;(Ⅱ)方程有唯一实数解,求的取值范围.(Ⅲ)若对都有恒成立,求实数的取值范围.
(本小题满分12分)已知函数.(1)若函数在(,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;(2)是否存在正整数a,使得在(,)上既不是单调递增函数也不是单调递减函数?若存在,试求出a的值,若不存在,请说明理由.