((本小题满分12分)已知x>,函数f(x)=,h(x)=2e lnx(e为自然常数).(Ⅰ)求证:f(x)≥h(x);(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.
数列的前项和记为,,点在直线上,. (Ⅰ)当实数为何值时,数列是等比数列? (Ⅱ)在(Ⅰ)的结论下,设,,是数列的前项和,求。
如图,在△ABC中,已知B=,AC=4,D为BC边上一点. (I)若AD=2,S△ABC=2,求DC的长; (Ⅱ)若AB=AD,试求△ADC的周长的最大值.
(本小题满分14分) 已知函数f(x)=x-ax + (a-1),. (I)讨论函数的单调性; (II)若,数列满足. 若首项,证明数列为递增数列; 若首项为正整数,数列递增,求首项的最小值.
(本小题满分12分) 有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用) (I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少? (II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
(本小题满分12分)设点P的坐标为,直线l的方程为.请写出点P到直线l的距离,并加以证明.