在平面直角坐标系xOy中,设点集 A n = { ( 0 , 0 ) , ( 1 , 0 ) , ( 2 , 0 ) , … , ( n , 0 ) } , B n = { ( 0 , 1 ) , ( n , 1 ) } , C n = { ( 0 , 2 ) , ( 1 , 2 ) , ( 2 , 2 ) , ⋯ , ( n , 2 ) } , n ∈ N * .
令 M n = A n ∪ B n ∪ C n .从集合 M n中任取两个不同的点,用随机变量 X表示它们之间的距离.
(1)当 n=1时,求 X的概率分布;
(2)对给定的正整数 n( n≥3),求概率 P( X≤ n)(用 n表示).
(本小题满分12分)已知函数在上是增函数,在上是减函数.(Ⅰ)当的值;(Ⅱ)若在上是增函数,且对于内的任意两个变量,恒有成立,求实数的取值范围;(Ⅲ)设,求证:.
(本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点与轴不垂直的直线交椭圆于,两点. (Ⅰ)求椭圆的标准方程;(Ⅱ)在线段上是否存在点,使得以为邻边的平行四边形是菱形? 若存在,求出的取值范围;若不存在,请说明理由.
(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=,CD=1.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)证明:MC⊥BD;(Ⅲ)求二面角A—PB—D的余弦值.
(本小题满分12分)已知等比数列中,.(Ⅰ)若为等差数列,且满足,求数列的通项公式;(Ⅱ)若数列满足,求数列的前项和.