在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为.(1)求证://平面;(2)求的长;(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
已知(其中)(1)求及;(2)试比较与的大小,并说明理由.
在1,2,---,7这7个自然数中,任取个不同的数.(1)求这个数中至少有个是偶数的概率;(2)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).求随机变量的分布列及其数学期望.
选修4-4:坐标系与参数方程已知曲线的参数方程为,曲线的极坐标方程为.(1)将曲线的参数方程化为普通方程;(2)曲线与曲线有无公共点?试说明理由.
选修4-2:矩阵与变换若点A(-2,2)在矩阵对应变换的作用下得到的点为B(2,2),求矩阵.
已知数列中.为实常数.(Ⅰ)若,求数列的通项公式;(Ⅱ)若.①是否存在常数求出的值,若不存在,请说明理由;②设 .证明:n≥2时, .