已知数列中.为实常数.(Ⅰ)若,求数列的通项公式;(Ⅱ)若.①是否存在常数求出的值,若不存在,请说明理由;②设 .证明:n≥2时, .
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标,曲线的极坐标方程为(其中为常数).(1)若曲线与曲线只有一个公共点,求的取值范围;(2)当时,求曲线上的点与曲线上的点的最小距离.
如图,在中,是的角平分线,的外接圆交于,.(1)求证:;(2)当时,求的长.
经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.(1)求轨迹的方程;(2)证明:;(3)若点到直线的距离等于,且的面积为20,求直线的方程.
设函数.(1)若在其定义域内为单调递增函数,求实数的取值范围;(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.
如图,在等腰梯形中,是梯形的高,,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.(1)求证:平面;(2)求证:平面.