高中数学

在三棱锥P-ABC中,D为AB的中点。

(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN∥平面PAD.
(2)求证:MN⊥CD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是矩形,侧面是正三角形,且侧面底面,为侧棱的中点

(1)求证://平面
(2)求证:⊥平面
(3)若直线与平面所成的角为30,求的值

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图1,在直角梯形中,,,, 点 为中点.将沿折起, 使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.

⑴求证:PA∥平面BDE;
⑵求证:平面BDE⊥平面PBC.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题满分12分)
如图,在四棱锥中,为正三角形,⊥平面⊥平面为棱的中点,.

(I)求证:∥平面
(II)求证:平面⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正三棱柱(底面为正三角形,侧棱垂直于底面)中,D是BC的中点,.  

(Ⅰ)求证:平面; 
(Ⅱ)求点C到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

己知四棱锥P-ABCD,其中底面ABCD为矩形,侧棱底面ABCD,其中BC=2AB=2PA=6,
M,N为侧棱PC上的两个三等分点,如图所示:
 
(1)求证: AN∥平面MBD;
(2)求锐二面角B-PC-A的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱柱中,侧棱与底面垂直,的中点,的交点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知三棱柱ABC—A1B1C1中,底面ABC是等边三角形,侧棱与底面垂直,点E,F分别为棱BB1,AC中点。

(1)证明:BF//平面A1CE;
(2)若AA1=6,AC=4,求直线CE与平面A1EF所成角的正弦值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知矩形所在的平面与直角梯形所在的平面垂直,且分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知EFGM分别是四面体的棱ADCDBDBC的中点,求证:AM∥平面EFG

来源:直线与平面
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.
如图,已知直线平面,且都在外.求证:

 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是菱形,且

(1)求证:
(2)若平面与平面的交线为,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知在四棱锥中,底面是矩形,且平面
分别是线段的中点.

(1)证明:
(2)判断并说明上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题