如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.
(本题15分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE
如图,四棱锥的底面是矩形,侧面是正三角形,且侧面底面,为侧棱的中点
(1)求证://平面;
(2)求证:⊥平面;
(3)若直线与平面所成的角为30,求的值
己知四棱锥P-ABCD,其中底面ABCD为矩形,侧棱底面ABCD,其中BC=2AB=2PA=6,
M,N为侧棱PC上的两个三等分点,如图所示:
(1)求证: AN∥平面MBD;
(2)求锐二面角B-PC-A的余弦值.
(本小题满分12分)如图,已知平面是正三角形,.
(Ⅰ)在线段上是否存在一点,使平面?
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的余弦值.
(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD, PB=PD,⊥,⊥,,分别是,的中点,连结.求证:
(1)∥平面;
(2)⊥平面.
(本小题满分12分)如图1,在直角梯形中,,,, 点 为中点.将沿折起, 使平面平面,得到几何体,如图2所示.
(1)在上找一点,使平面;
(2)求点到平面的距离.
三棱柱中,侧棱与底面垂直,,,是的中点,是与的交点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面.
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
⑴求证:PA∥平面BDE;
⑵求证:平面BDE⊥平面PBC.
(本小题满分12分)在长方体中,,.点是线段上的动点,点为的中点.
(1)当点是中点时,求证:直线∥平面;
(2)若二面角的余弦值为,求线段的长.
如图,四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD;
(2)若M为PC的中点,求证:PA∥平面BDM.