高中数学

在四棱锥中,平面是正三角形,的交点恰好是中点,又,点在线段上,且

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

长方体中,,,点中点.
(1)求证: 平面
(2)求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知矩形所在的平面与直角梯形所在的平面垂直,且分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直三棱柱的侧面是正方形,点是侧面的中心,是棱的中点.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。

(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知三棱柱ABC—A1B1C1中,底面ABC是等边三角形,侧棱与底面垂直,点E,F分别为棱BB1,AC中点。

(1)证明:BF//平面A1CE;
(2)若AA1=6,AC=4,求直线CE与平面A1EF所成角的正弦值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)在长方体中,.点是线段上的动点,点的中点.

(1)当点是中点时,求证:直线∥平面
(2)若二面角的余弦值为,求线段的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.
(1)求证:MN∥平面PAD.
(2)求证:MN⊥CD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.

⑴求证:PA∥平面BDE;
⑵求证:平面BDE⊥平面PBC.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题满分12分)
如图,在四棱锥中,为正三角形,⊥平面⊥平面为棱的中点,.

(I)求证:∥平面
(II)求证:平面⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四面体中,平面平面90°.分别为棱的中点.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形所在平面与直角三角形所在平面互相垂直,,点分别是的中点.

(1)求证: ∥平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AB∥CD,,平面平面,四边形是矩形,,点在线段上。

(1)求证:平面
(2)当为何值时,∥平面?写出结论,并加以证明;
(3)当EM为何值时,AM⊥BE?写出结论,并加以证明。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知一个空间几何体的直观图和三视图(尺寸如图所示).

(Ⅰ)设点为棱中点,求证:平面
(Ⅱ)线段上是否存在一点,使得直线与平面所成角的正弦值等于?若存在,试确定点的位置;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ)若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题