如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.
(本小题16分)已知等差数列的前项和为,且满足,公差.(1)若成等比数列,求数列的通项公式;(2)是否存在数列,使得对任意的,仍然是数列中的一项?若存在,求出所有满足条件的公差;若不存在,说明理由;(3)设数列的每一列都是正整数,且,若数列是等比数列,求数列的通项公式.
(本小题满分16分)在平面直角坐标系中,已知经过原点O的直线与圆交于两点.(1)若直线与圆相切,切点为B,求直线的方程;(2)若,求直线的方程;(3)若圆与轴的正半轴的交点为D,求面积的最大值.
(本小题16分)已知函数(1)时,解关于的不等式;(2)当时,若对任意的,不等式恒成立,求实数的取值范围;(3)若,求的取值范围.
(本小题14分)设数列的前项和满足:,等比数列满足:(1)求数列的通项公式;(2)求数列的前项和.
(本小题满分14分)如图,平面平面,,,(1)求证:;(2)求证: