已知函数在处有极大值.(Ⅰ)求的值;(Ⅱ)若过原点有三条直线与曲线相切,求的取值范围;(Ⅲ)当时,函数的图象在抛物线的下方,求的取值范围.
河南省某示范性高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座(规定:各科达到预先设定的人数时称为满座,否则称为不满座).统计数据表明,各学科讲座各天的满座概率如下表:(Ⅰ)求数学辅导讲座在周一、周三、周五都不满座的概率;(Ⅱ)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.
如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.(Ⅰ)求证:EF⊥平面PBC;(Ⅱ)求二面角F-PC-B的平面角的余弦值.
已知数列{}是等差数列,且满足:a1+a2+a3=6,a5=5;数列{}满足:-=(n≥2,n∈N﹡),b1=1.(Ⅰ)求和;(Ⅱ)记数列=(n∈N﹡),若{}的前n项和为,求.
已知函数(、∈R,≠0),函数的图象在点(2,)处的切线与轴平行.(1)用关于的代数式表示;(2)求函数的单调增区间;(3)当,若函数有三个零点,求m的取值范围.
已知椭圆的一个焦点为F(2,0),离心率.(1)求椭圆的方程;(2)设直线与椭圆交于不同的A,B两点,与y轴交于E点,且,求实数m的值.