高中数学

(本小题满分13分)如图,在四棱锥中,侧棱底面是棱中点.

(1)求证:平面
(2)设点是线段上一动点,且,当直线与平面所成的角最大时,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD, PB=PD,分别是的中点,连结.求证:

(1)∥平面
(2)⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.

(1)求证:BE//平面PAD;
(2)若BE⊥平面PCD。
(i)求异面直线PD与BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)
如图,在正四面体中,分别是棱的中点.

(1)求证:四边形是平行四边形;
(2)求证:平面
(3)求证:平面.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题共14分)如图,在四面体中,平面,.的中点,的中点.

(Ⅰ)求证:平面平面
(Ⅱ)若点在线段上,且满足,求证:平面
(Ⅲ)若,求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,分别是中点.

求证:(1)∥平面
(2)平面.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,平面平面,且四边形为矩形,四边形为直角梯形,

(1)求证平面
(2)求平面与平面所成锐二面角的余弦值;
(3)求直线与平面所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,平行四边形中,,且
正方形和平面成直二面角,的中点.

(1)求证:
(2)求证:平面
(3)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正三棱柱(底面为正三角形,侧棱垂直于底面)中,D是BC的中点,.  

(Ⅰ)求证:平面; 
(Ⅱ)求点C到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图1,在直角梯形中,,,, 点 为中点.将沿折起, 使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

己知四棱锥P-ABCD,其中底面ABCD为矩形,侧棱底面ABCD,其中BC=2AB=2PA=6,
M,N为侧棱PC上的两个三等分点,如图所示:
 
(1)求证: AN∥平面MBD;
(2)求锐二面角B-PC-A的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。

(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是矩形,侧面是正三角形,且侧面底面,为侧棱的中点

(1)求证://平面
(2)求证:⊥平面
(3)若直线与平面所成的角为30,求的值

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为等腰直角三角形,分别是边的中点,现将沿折起,使面分别是边的中点,平面分别交于两点.

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

长方体中,,,点中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题