(本小题满分14分)如图,在四棱锥P - ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.
已知函数,,,,,,将它们分别写在六张卡片上,放在一个盒子中,(Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得的函数是奇函数的概率;(Ⅱ)从盒子中任取两张卡片,求其中至少一张上为奇函数的概率
已知函数.(Ⅰ)当时,求的最小值;(Ⅱ)若函数在区间上为单调函数,求实数的取值范围;(Ⅲ)当时,不等式恒成立,求实数的取值范围.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当 时,求实数取值范围.
已知四棱锥中,底面为直角梯形,.,,为正三角形,且面面,异面直线与所成的角的余弦值为,为的中点.(Ⅰ)求证:面;(Ⅱ)求点到平面的距离;(Ⅲ)求平面与平面相交所成的锐二面角的大小.
已知数列满足:.(Ⅰ)求;(Ⅱ)设,求数列的通项公式;(Ⅲ)设,不等式恒成立时,求实数的取值范围.