过点的直线交双曲线于两个不同的点,是坐标原点,直线与的斜率之和为,求直线的方程。
12分)设,在由直线及坐标轴所围成的区域内任意 投一质点M,点M落在由曲线所围成的区域内概率为,求 a值。
直线 l 被两直线 截得线段中点是M (0,1),求l方程。
已知函数f(x)=x-ax+(a-1),。 (1)讨论函数的单调性; (2)证明:若,则对任意x,x,xx,有。
已知,椭圆C过点A,两个焦点为(-1,0),(1,0)。 (1)求椭圆C的方程; (2)E、F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
在平面直角坐标系中,已知圆和圆, (1)若直线过点,且被圆截得的弦长为,求直线的方程; (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与 圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所 有满足条件的点P的坐标。