初中数学

政府将要在某学校大楼前修一座大桥.如图,宋老师测得大楼的高是20米,大楼的底部 D 处与将要修的大桥 BC 位于同一水平线上,宋老师又上到楼顶 A 处测得 B C 的俯角 EAB EAC 分别为 67 ° 22 ° ,宋老师说现在我能算出将要修的大桥 BC 的长了.同学们:你知道宋老师是怎么算的吗?请写出计算过程(结果精确到0.1米).

其中 sin 67 ° 12 13 cos 67 ° 5 13 tan 67 ° 12 5 sin 22 ° 3 8 cos 22 ° 15 16 tan 22 ° 2 5

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,小亮为了测量校园里教学楼 AB 的高度,将测角仪 CD 竖直放置在与教学楼水平距离为 18 3 m 的地面上,若测角仪的高度是 1 . 5 m .测得教学楼的顶部 A 处的仰角为 30 ° .则教学楼的高度是 (    )

A. 55 . 5 m B. 54 m C. 19 . 5 m D. 18 m

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

某市为了加快 5 G 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点 A 测得发射塔顶端 P 点的仰角是 45 ° ,向前走60米到达 B 点测得 P 点的仰角是 60 ° ,测得发射塔底部 Q 点的仰角是 30 ° .请你帮小军计算出信号发射塔 PQ 的高度.(结果精确到0.1米, 3 1 . 732 )

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,小强想测量楼 CD 的高度,楼在围墙内,小强只能在围墙外测量,他无法测得观测点到楼底的距离,于是小强在 A 处仰望楼顶,测得仰角为 37 ° ,再往楼的方向前进30米至 B 处,测得楼顶的仰角为 53 ° ( A B C 三点在一条直线上),求楼 CD 的高度(结果精确到0.1米,小强的身高忽略不计).

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点 A 处安置测倾器,测得点 M 的仰角 MBC = 33 ° ,在与点 A 相距3.5米的测点 D 处安置测倾器,测得点 M 的仰角 MEC = 45 ° (点 A D N 在一条直线上),求电池板离地面的高度 MN 的长.(结果精确到1米;参考数据 sin 33 ° 0 . 54 cos 33 ° 0 . 84 tan 33 ° 0 . 65 )

来源:2021年四川省成都市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,甲、乙为两座建筑物,它们之间的水平距离 BC 30 m ,在 A 点测得 D 点的仰角 EAD 45 ° ,在 B 点测得 D 点的仰角 CBD 60 ° ,求这两座建筑物的高度(结果保留根号)

来源:2017年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,为了测量山坡上一棵树 PQ 的高度,小明在点 A 处利用测角仪测得树顶 P 的仰角为 45 ° ,然后他沿着正对树 PQ 的方向前进 10 m 到达点 B 处,此时测得树顶 P 和树底 Q 的仰角分别是 60 ° 30 ° ,设 PQ 垂直于 AB ,且垂足为 C

(1)求 BPQ 的度数;

(2)求树 PQ 的高度(结果精确到 0 . 1 m 3 1 . 73 )

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,某校数学兴趣小组为测得校园里旗杆 AB 的高度,在操场的平地上选择一点 C ,测得旗杆顶端 A 的仰角为 30 ° ,再向旗杆的方向前进16米,到达点 D ( C D B 三点在同一直线上),又测得旗杆顶端 A 的仰角为 45 ° ,请计算旗杆 AB 的高度(结果保留根号).

来源:2016年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在一座山的前方有一栋住宅,已知山高 AB = 120 m ,楼高 CD = 99 m ,某天上午9时太阳光线从山顶点 A 处照射到住宅的点 E 外.在点 A 处测得点 E 的俯角 EAM = 45 ° ,上午10时太阳光线从山顶点 A 处照射到住宅点 F 处,在点 A 处测得点 F 的俯角 FAM = 60 ° ,已知每层楼的高度为 3 m EF = 40 m ,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙? ( 3 1 . 73 )

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,楼顶上有一个广告牌 AB ,从与楼 BC 相距 15 m D 处观测广告牌顶部 A 的仰角为 37 ° ,观测广告牌底部 B 的仰角为 30 ° ,求广告牌 AB 的高度.(结果保留小数点后一位,参考数据: sin 37 ° 0 . 60 cos 37 ° 0 . 80 tan 37 ° 0 . 75 2 1 . 41 3 1 . 73 )

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

资阳市为实现 5 G 网络全覆盖, 2020 - 2025 年拟建设 5 G 基站七千个.如图,在坡度为 i = 1 : 2 . 4 的斜坡 CB 上有一建成的基站塔 AB ,小芮在坡脚 C 测得塔顶 A 的仰角为 45 ° ,然后她沿坡面 CB 行走13米到达 D 处,在 D 处测得塔顶 A 的仰角为 53 ° .(点 A B C D 均在同一平面内)(参考数据: sin 53 ° 4 5 cos 53 ° 3 5 tan 53 ° 4 3 )

(1)求 D 处的竖直高度;

(2)求基站塔 AB 的高.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度 D 点处时,无人机测得操控者 A 的俯角为 75 ° ,测得小区楼房 BC 顶端点 C 处的俯角为 45 ° .已知操控者 A 和小区楼房 BC 之间的距离为45米,小区楼房 BC 的高度为 15 3 米.

(1)求此时无人机的高度;

(2)在(1)条件下,若无人机保持现有高度沿平行于 AB 的方向,并以5米 / 秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点 A B C D 都在同一平面内.参考数据: tan 75 ° = 2 + 3 tan 15 ° = 2 - 3 .计算结果保留根号)

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

我国航天事业捷报频传,天舟二号于2021年5月29日成功发射,震撼人心.当天舟二号从地面到达点 A 处时,在 P 处测得 A 点的仰角 DPA 30 ° A P 两点的距离为6千米,它沿铅垂线上升7.5秒后到达 B 处,此时在 P 处测得 B 点的仰角 DPB 45 ° ,求天舟二号从 A 处到 B 处的平均速度.(结果精确到 1 m / s ,取 3 = 1 . 732 2 = 1 . 414 )

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,为测量建筑物 CD 的高度,在 A 点测得建筑物顶部 D 点的仰角为 22 ° ,再向建筑物 CD 前进30米到达 B 点,测得建筑物顶部 D 点的仰角为 58 ° ( A B C 三点在一条直线上),求建筑物 CD 的高度.(结果保留整数.参考数据: sin 22 ° 0 . 37 cos 22 ° 0 . 93 tan 22 ° 0 . 40 sin 58 ° 0 . 85 cos 58 ° 0 . 53 tan 58 ° 1 . 60 )

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底 M 处出发,向前走3米到达 A 处,测得树顶端 E 的仰角为 30 ° ,他又继续走下台阶到达 C 处,测得树的顶端 E 的仰角是 60 ° ,再继续向前走到大树底 D 处,测得食堂楼顶 N 的仰角为 45 ° .已知点离地面的高度 AB = 2 米, BCA = 30 ° ,且 B C D 三点在同一直线上.

(1)求树 DE 的高度;

(2)求食堂 MN 的高度.

来源:2017年湖北省鄂州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学解直角三角形的应用-仰角俯角问题试题