初中数学

如图,为了测量山坡上一棵树 PQ 的高度,小明在点 A 处利用测角仪测得树顶 P 的仰角为 45 ° ,然后他沿着正对树 PQ 的方向前进 10 m 到达点 B 处,此时测得树顶 P 和树底 Q 的仰角分别是 60 ° 30 ° ,设 PQ 垂直于 AB ,且垂足为 C

(1)求 BPQ 的度数;

(2)求树 PQ 的高度(结果精确到 0 . 1 m 3 1 . 73 )

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在一座山的前方有一栋住宅,已知山高 AB = 120 m ,楼高 CD = 99 m ,某天上午9时太阳光线从山顶点 A 处照射到住宅的点 E 外.在点 A 处测得点 E 的俯角 EAM = 45 ° ,上午10时太阳光线从山顶点 A 处照射到住宅点 F 处,在点 A 处测得点 F 的俯角 FAM = 60 ° ,已知每层楼的高度为 3 m EF = 40 m ,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙? ( 3 1 . 73 )

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,某高速公路建设中需要测量某条江的宽度 AB ,飞机上的测量人员在 C 处测得 A B 两点的俯角分别为 45 ° 30 ° .若飞机离地面的高度 CH 为1200米,且点 H A B 在同一水平直线上,则这条江的宽度 AB   米(结果保留根号).

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

全国历史文化名城宜宾有许多名胜古迹,始建于明朝的白塔是其中之一.如图,为了测量白塔的高度 AB ,在 C 处测得塔顶 A 的仰角为 45 ° ,再向白塔方向前进15米到达 D 处,又测得塔顶 A 的仰角为 60 ° ,点 B D C 在同一水平线上,求白塔的高度 AB ( 3 1 . 7 ,精确到1米)

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在一次数学课外实践活动中,小聪在距离旗杆 10 m A 处测得旗杆顶端 B 的仰角为 60 ° ,测角仪高 AD 1 m ,则旗杆高 BC    m (结果保留根号).

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角 ADE 55 ° ,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是(  )

A. tan 55 ° = 6 x - 1 B. tan 55 ° = x - 1 6

C. sin 55 ° = x - 1 6 D. cos 55 ° = x - 1 6

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图是某路灯在铅垂面内的示意图,灯柱 AC 的高为11米,灯杆 AB 与灯柱 AC 的夹角 A = 120 ° ,路灯采用锥形灯罩,在地面上的照射区域 DE 长为18米,从 D E 两处测得路灯 B 的仰角分别为 α β ,且 tan α = 6 tan β = 3 4 ,求灯杆 AB 的长度.

来源:2018年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

数学兴趣小组根据无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为 30 ° ,则旗杆的高度约为          

米.

(结果精确到1米,参考数据: 2 1 . 41 3 1 . 73 )

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

无人机在 A 处测得正前方河流两岸 B C 的俯角分别为 α = 70 ° β = 40 ° ,此时无人机的高度是 h ,则河流的宽度 BC (    )

A. h ( tan 50 ° tan 20 ° ) B. h ( tan 50 ° + tan 20 ° )

C. h ( 1 tan 70 ° 1 tan 40 ° ) D. h ( 1 tan 70 ° + 1 tan 40 ° )

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为 45 ° ,底部的俯角为 38 ° ;又用绳子测得测角仪距地面的高度 AB 31 . 6 m .求该大楼的高度(结果精确到 0 . 1 m )

(参考数据: sin 38 ° 0 . 62 cos 38 ° 0 . 79 tan 38 ° 0 . 78 )

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,楼顶上有一个广告牌 AB ,从与楼 BC 相距 15 m D 处观测广告牌顶部 A 的仰角为 37 ° ,观测广告牌底部 B 的仰角为 30 ° ,求广告牌 AB 的高度.(结果保留小数点后一位,参考数据: sin 37 ° 0 . 60 cos 37 ° 0 . 80 tan 37 ° 0 . 75 2 1 . 41 3 1 . 73 )

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

资阳市为实现 5 G 网络全覆盖, 2020 - 2025 年拟建设 5 G 基站七千个.如图,在坡度为 i = 1 : 2 . 4 的斜坡 CB 上有一建成的基站塔 AB ,小芮在坡脚 C 测得塔顶 A 的仰角为 45 ° ,然后她沿坡面 CB 行走13米到达 D 处,在 D 处测得塔顶 A 的仰角为 53 ° .(点 A B C D 均在同一平面内)(参考数据: sin 53 ° 4 5 cos 53 ° 3 5 tan 53 ° 4 3 )

(1)求 D 处的竖直高度;

(2)求基站塔 AB 的高.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度 D 点处时,无人机测得操控者 A 的俯角为 75 ° ,测得小区楼房 BC 顶端点 C 处的俯角为 45 ° .已知操控者 A 和小区楼房 BC 之间的距离为45米,小区楼房 BC 的高度为 15 3 米.

(1)求此时无人机的高度;

(2)在(1)条件下,若无人机保持现有高度沿平行于 AB 的方向,并以5米 / 秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点 A B C D 都在同一平面内.参考数据: tan 75 ° = 2 + 3 tan 15 ° = 2 - 3 .计算结果保留根号)

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

我国航天事业捷报频传,天舟二号于2021年5月29日成功发射,震撼人心.当天舟二号从地面到达点 A 处时,在 P 处测得 A 点的仰角 DPA 30 ° A P 两点的距离为6千米,它沿铅垂线上升7.5秒后到达 B 处,此时在 P 处测得 B 点的仰角 DPB 45 ° ,求天舟二号从 A 处到 B 处的平均速度.(结果精确到 1 m / s ,取 3 = 1 . 732 2 = 1 . 414 )

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,为测量建筑物 CD 的高度,在 A 点测得建筑物顶部 D 点的仰角为 22 ° ,再向建筑物 CD 前进30米到达 B 点,测得建筑物顶部 D 点的仰角为 58 ° ( A B C 三点在一条直线上),求建筑物 CD 的高度.(结果保留整数.参考数据: sin 22 ° 0 . 37 cos 22 ° 0 . 93 tan 22 ° 0 . 40 sin 58 ° 0 . 85 cos 58 ° 0 . 53 tan 58 ° 1 . 60 )

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学解直角三角形的应用-仰角俯角问题试题