如图,为测量建筑物 CD 的高度,在 A 点测得建筑物顶部 D 点的仰角为 22 ° ,再向建筑物 CD 前进30米到达 B 点,测得建筑物顶部 D 点的仰角为 58 ° ( A , B , C 三点在一条直线上),求建筑物 CD 的高度.(结果保留整数.参考数据: sin 22 ° ≈ 0 . 37 , cos 22 ° ≈ 0 . 93 , tan 22 ° ≈ 0 . 40 , sin 58 ° ≈ 0 . 85 , cos 58 ° ≈ 0 . 53 , tan 58 ° ≈ 1 . 60 )
如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC. (1)求证:△BAD≌△AEC; (2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
(1)计算: . (2)已知,关于x的方程的两个实数根、满足,求实数m的值.
已知,如图,ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1),解答下列问题: (1)当t为何值时,四边形AQDM是平行四边形? (2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使四边形ANPM的面积是ABCD面积的一半,若存在,求出相应的t值,若不存在,说明理由 (4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成的两部分?若存在,求出相应的t值,若不存在,说明理由
在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式 这种利用面积关系解决问题的方法,使抽象的数量关系因集合直观而形象化。 【研究速算】 提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法? 几何建模: 用矩形的面积表示两个正数的乘积,以47×43为例: (1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面。 (2)分析:原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果。 归纳提炼: 两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述). 【研究方程】 提出问题:怎么图解一元二次方程 几何建模: (1)变形: (2)画四个长为,宽为的矩形,构造图④ (3)分析:图中的大正方形面积可以有两种不同的表达方式,或四个长,宽的矩形之和,加上中间边长为2的小正方形面积 即: ∵ ∴ ∴ ∵ ∴ 归纳提炼:求关于的一元二次方程的解 要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长) 【研究不等关系】 提出问题:怎么运用矩形面积表示与的大小关系(其中)? 几何建模: (1)画长,宽的矩形,按图⑤方式分割 (2)变形: (3)分析:图⑤中大矩形的面积可以表示为;阴影部分面积可以表示为, 画点部分的面积可表示为,由图形的部分与整体的关系可知:>,即> 归纳提炼: 当,时,表示与的大小关系 根据题意,设,,要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件 (1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大; (3)商场的营销部结合上述情况,提出了A、B两种营销方案 方案A:该文具的销售单价高于进价且不超过30元; 方案B:每天销售量不少于10件,且每件文具的利润至少为25元 请比较哪种方案的最大利润更高,并说明理由