初中数学

如图,聪聪想在自己家的窗口 A 处测量对面建筑物 CD 的高度,他首先量出窗口 A 到地面的距离 ( AB ) 16 m ,又测得从 A 处看建筑物底部 C 的俯角 α 30 ° ,看建筑物顶部 D 的仰角 β 53 ° ,且 AB CD 都与地面垂直,点 A B C D 在同一平面内.

(1)求 AB CD 之间的距离(结果保留根号).

(2)求建筑物 CD 的高度(结果精确到 1 m )

(参考数据: sin 53 ° 0 . 8 cos 53 ° 0 . 6 tan 53 1 . 3 3 1 . 7 )

来源:2019年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在大楼 AB 正前方有一斜坡 CD ,坡角 DCE = 30 ° ,楼高 AB = 60 米,在斜坡下的点 C 处测得楼顶 B 的仰角为 60 ° ,在斜坡上的 D 处测得楼顶 B 的仰角为 45 ° ,其中点 A C E 在同一直线上.

(1)求坡底 C 点到大楼距离 AC 的值;

(2)求斜坡 CD 的长度.

来源:2018年湖北省黄冈市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图所示,飞机在一定高度上沿水平直线飞行,先在点 A 处测得正前方小岛 C 的俯角为 30 ° ,面向小岛方向继续飞行 10 km 到达 B 处,发现小岛在其正后方,此时测得小岛的俯角为 45 ° ,如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).

来源:2017年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,山顶上有一个信号塔 AC ,已知信号塔高 AC = 15 米,在山脚下点 B 处测得塔底 C 的仰角 CBD = 36 . 9 ° ,塔顶 A 的仰角 ABD = 42 . 0 ° ,求山高 CD (点 A C D 在同一条竖直线上).

(参考数据: tan 36 . 9 ° 0 . 75 sin 36 . 9 ° 0 . 60 tan 42 . 0 ° 0 . 90 )

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,为了测出旗杆 AB 的高度,在旗杆前的平地上选择一点 C ,测得旗杆顶部 A 的仰角为 45 ° ,在 C B 之间选择一点 D ( C D B 三点共线),测得旗杆顶部 A 的仰角为 75 ° ,且 CD = 8 m

(1)求点 D CA 的距离;

(2)求旗杆 AB 的高.

(注 : 结果保留根号)

来源:2016年江苏省徐州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在 A 处测得塔杆顶端 C 的仰角是 55 ° ,沿 HA 方向水平前进43米到达山底 G 处,在山顶 B 处发现正好一叶片到达最高位置,此时测得叶片的顶端 D ( D C H 在同一直线上)的仰角是 45 ° .已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高 BG 为10米, BG HG CH AH ,求塔杆 CH 的高.(参考数据: tan 55 ° 1 . 4 tan 35 ° 0 . 7 sin 55 ° 0 . 8 sin 35 ° 0 . 6 )

来源:2017年湖北省随州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,为了测量某建筑物 MN 的高度,在平地上 A 处测得建筑物顶端 M 的仰角为 30 ° ,向 N 点方向前进 16 m 到达 B 处,在 B 处测得建筑物顶端 M 的仰角为 45 ° ,则建筑物 MN 的高度等于 (    )

A. 8 ( 3 + 1 ) m B. 8 ( 3 - 1 ) m C. 16 ( 3 + 1 ) m D. 16 ( 3 - 1 ) m

来源:2016年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

张家界大峡谷玻璃桥是我市又一闻名中外的五星景点.某校初三年级在一次研学活动中,数学研学小组设计以下方案测量桥的高度.如图,在桥面正下方的谷底选一观测点 A ,观测到桥面 B C 的仰角分别为 30 ° 60 ° ,测得 BC 长为320米,求观测点 A 到桥面 BC 的距离.(结果保留整数,参考数据: 3 1 . 73 )

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆 AB 的高,他们在旗杆正前方台阶上的点 C 处,测得旗杆顶端 A 的仰角为 45 ° ,朝着旗杆的方向走到台阶下的点 F 处,测得旗杆顶端 A 的仰角为 60 ° ,已知升旗台的高度 BE 为1米,点 C 距地面的高度 CD 为3米,台阶 CF 的坡角为 30 ° ,且点 E F D 在同一条直线上,求旗杆 AB 的高度(计算结果精确到0.1米,参考数据: 2 1 . 41 3 1 . 73 )

来源:2017年湖北省荆门市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,楼顶上有一个广告牌 AB ,从与楼 BC 相距 15 m D 处观测广告牌顶部 A 的仰角为 37 ° ,观测广告牌底部 B 的仰角为 30 ° ,求广告牌 AB 的高度.(结果保留小数点后一位,参考数据: sin 37 ° 0 . 60 cos 37 ° 0 . 80 tan 37 ° 0 . 75 2 1 . 41 3 1 . 73 )

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

资阳市为实现 5 G 网络全覆盖, 2020 - 2025 年拟建设 5 G 基站七千个.如图,在坡度为 i = 1 : 2 . 4 的斜坡 CB 上有一建成的基站塔 AB ,小芮在坡脚 C 测得塔顶 A 的仰角为 45 ° ,然后她沿坡面 CB 行走13米到达 D 处,在 D 处测得塔顶 A 的仰角为 53 ° .(点 A B C D 均在同一平面内)(参考数据: sin 53 ° 4 5 cos 53 ° 3 5 tan 53 ° 4 3 )

(1)求 D 处的竖直高度;

(2)求基站塔 AB 的高.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度 D 点处时,无人机测得操控者 A 的俯角为 75 ° ,测得小区楼房 BC 顶端点 C 处的俯角为 45 ° .已知操控者 A 和小区楼房 BC 之间的距离为45米,小区楼房 BC 的高度为 15 3 米.

(1)求此时无人机的高度;

(2)在(1)条件下,若无人机保持现有高度沿平行于 AB 的方向,并以5米 / 秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点 A B C D 都在同一平面内.参考数据: tan 75 ° = 2 + 3 tan 15 ° = 2 - 3 .计算结果保留根号)

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

我国航天事业捷报频传,天舟二号于2021年5月29日成功发射,震撼人心.当天舟二号从地面到达点 A 处时,在 P 处测得 A 点的仰角 DPA 30 ° A P 两点的距离为6千米,它沿铅垂线上升7.5秒后到达 B 处,此时在 P 处测得 B 点的仰角 DPB 45 ° ,求天舟二号从 A 处到 B 处的平均速度.(结果精确到 1 m / s ,取 3 = 1 . 732 2 = 1 . 414 )

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,为测量建筑物 CD 的高度,在 A 点测得建筑物顶部 D 点的仰角为 22 ° ,再向建筑物 CD 前进30米到达 B 点,测得建筑物顶部 D 点的仰角为 58 ° ( A B C 三点在一条直线上),求建筑物 CD 的高度.(结果保留整数.参考数据: sin 22 ° 0 . 37 cos 22 ° 0 . 93 tan 22 ° 0 . 40 sin 58 ° 0 . 85 cos 58 ° 0 . 53 tan 58 ° 1 . 60 )

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底 M 处出发,向前走3米到达 A 处,测得树顶端 E 的仰角为 30 ° ,他又继续走下台阶到达 C 处,测得树的顶端 E 的仰角是 60 ° ,再继续向前走到大树底 D 处,测得食堂楼顶 N 的仰角为 45 ° .已知点离地面的高度 AB = 2 米, BCA = 30 ° ,且 B C D 三点在同一直线上.

(1)求树 DE 的高度;

(2)求食堂 MN 的高度.

来源:2017年湖北省鄂州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学解直角三角形的应用-仰角俯角问题试题