如图,在菱形 中, ,点 , , 分别在边 , 上, , 平分 ,点 是线段 上一动点(与点 不重合).
(1)求证: ;
(2)当 , 时.
求 周长的最小值;
②若点 是 的中点,是否存在直线 将 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 .若存在,请求出 的值;若不存在,请说明理由.
如图, 和 都是等腰直角三角形, , , , , 为 边中点,连接 ,且 、 、 三点恰好在一条直线上, 交 于点 ,连接 , .
(1)求证: ;
(2)猜想 , , 之间的数量关系,并证明;
(3)若 , ,请写出线段 , 的长.
如图①,直线 表示一条东西走向的笔直公路,四边形 是一块边长为100米的正方形草地,点 , 在直线 上,小明从点 出发,沿公路 向西走了若干米后到达点 处,然后转身沿射线 方向走到点 处,接着又改变方向沿射线 方向走到公路 上的点 处,最后沿公路 回到点 处.设 米(其中 , 米,已知 与 之间的函数关系如图②所示,
(1)求图②中线段 所在直线的函数表达式;
(2)试问小明从起点 出发直至最后回到点 处,所走过的路径(即 是否可以是一个等腰三角形?如果可以,求出相应 的值;如果不可以,说明理由.
已知菱形 的面积为 ,点 是一边 上的中点,点 是对角线 上的动点.连接 ,若 平分 ,则线段 与 的和的最小值为 ,最大值为 .
如图,在矩形 中, , ,点 , 分别是边 , 上的动点,点 不与 , 重合,且 , 是五边形 内满足 且 的点.现给出以下结论:
① 与 一定互补;
②点 到边 , 的距离一定相等;
③点 到边 , 的距离可能相等;
④点 到边 的距离的最大值为 .
其中正确的是 .(写出所有正确结论的序号)
如图,在 中, , , 为 的中点,点 在 上,以点 为中心,将线段 顺时针旋转 得到线段 ,连接 , .
(1)比较 与 的大小;用等式表示线段 , , 之间的数量关系,并证明;
(2)过点 作 的垂线,交 于点 ,用等式表示线段 与 的数量关系,并证明.
如图,正方形 的边长为1,点 在射线 上(异于点 、 ,直线 与对角线 及射线 分别交于点 、
(1)若 ,求 的度数;
(2)若点 在线段 上,过点 作 ,垂足为 ,当 时,求 的长;
(3)以 为直径作 .
①判断 和 的位置关系,并说明理由;
②当直线 与 相切时,直接写出 的长.
如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为 、圆心角 的扇形 ,矩形 、 ,及若干个缺一边的矩形状框 、 、 、 , 围成,其中 、 、 在 上, 、 、 与 、 、 分别在半径 和 上, 、 、 、 和 、 分别在 和 上, 于 , 于 , , 、 、 、 依次等距离平行排放(最后一个矩形状框的边 与点 间的距离应不超过 ,
(1)求 的值;
(2)问: 与点 间的距离能否等于 ?如果能,求出这样的 的值,如果不能,那么它们之间的距离是多少?
如图, 、 分别是正方形 的边 、 上的动点,满足 ,连接 、 ,相交于点 ,连接 ,若正方形的边长为2.则线段 的最小值为 .
如图①, 、 是等腰 的斜边 上的两动点, , 且 .
(1)求证: ;
(2)求证: ;
(3)如图②,作 ,垂足为 ,设 , ,不妨设 ,请利用(2)的结论证明:当 时, 成立.
如图,正方形 内接于 ,线段 在对角线 上运动,若 的面积为 , ,则 周长的最小值是
A. |
3 |
B. |
4 |
C. |
5 |
D. |
6 |
如图,射线 , 互相垂直, ,点 位于射线 的上方,且在线段 的垂直平分线 上,连接 , .把线段 绕点 按逆时针方向旋转得到对应线段 ,若点 恰好落在射线 上,则点 到射线 的距离 .
在 中, , 平分 ,交对角线 于点 ,交射线 于点 ,将线段 绕点 顺时针旋转 得线段 .
(1)如图1,当 时,连接 ,请直接写出线段 和线段 的数量关系;
(2)如图2,当 时,过点 作 于点,连接 ,请写出线段 , , 之间的数量关系,并说明理由;
(3)当 时,连接 ,若 ,请直接写出 与 面积的比值.