首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 133

如图①, E F 是等腰 Rt Δ ABC 的斜边 BC 上的两动点, EAF = 45 ° CD BC CD = BE

(1)求证: ΔABE ΔACD

(2)求证: E F 2 = B E 2 + C F 2

(3)如图②,作 AH BC ,垂足为 H ,设 EAH = α FAH = β ,不妨设 AB = 2 ,请利用(2)的结论证明:当 α + β = 45 ° 时, tan ( α + β ) = tan α + tan β 1 - tan α tan β 成立.

登录免费查看答案和解析

如图①,E、F是等腰RtΔABC的斜边BC上的两动点,∠EA