如图,在菱形 ABCD 中, AB = AC ,点 E , F , G 分别在边 BC , CD 上, BE = CG , AF 平分 ∠ EAG ,点 H 是线段 AF 上一动点(与点 A 不重合).
(1)求证: ΔAEH ≅ ΔAGH ;
(2)当 AB = 12 , BE = 4 时.
求 ΔDGH 周长的最小值;
②若点 O 是 AC 的中点,是否存在直线 OH 将 ΔACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 1 : 3 .若存在,请求出 AH AF 的值;若不存在,请说明理由.
计算:(4b-3ab)+(-5b+3ab)
先化简,再求值:当x=时,求多项式2x2-5x+x2+4x―3x2―2的值
① (-7)×(-5)+(-10)÷2 ②(+)×12
① 3-4+6-7 ② 18-6÷(-2)×()
(满分14分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是劣弧AB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若,求△ABC的周长.