如图,在菱形 ABCD 中, AB = AC ,点 E , F , G 分别在边 BC , CD 上, BE = CG , AF 平分 ∠ EAG ,点 H 是线段 AF 上一动点(与点 A 不重合).
(1)求证: ΔAEH ≅ ΔAGH ;
(2)当 AB = 12 , BE = 4 时.
求 ΔDGH 周长的最小值;
②若点 O 是 AC 的中点,是否存在直线 OH 将 ΔACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 1 : 3 .若存在,请求出 AH AF 的值;若不存在,请说明理由.
有一张一个角为30°,最小变长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.
如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM= .
某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问: (1)这批游客的人数是多少?原计划租用多少辆45座客车? (2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?
广安市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时.某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题. (1)样本中最喜欢B项目的人数百分比是________,其所在扇形图中的圆心角的度数是____; (2)请把统计图补充完整; (3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少?
如图所示,△A′B′C′是△ABC经过平移得到的,A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4). (1)请写出三角形ABC平移的过程; (2)分别写出点A′,B′,C′的坐标; (3)求△A′B′C′的面积.