如图,在菱形 ABCD 中, AB = AC ,点 E , F , G 分别在边 BC , CD 上, BE = CG , AF 平分 ∠ EAG ,点 H 是线段 AF 上一动点(与点 A 不重合).
(1)求证: ΔAEH ≅ ΔAGH ;
(2)当 AB = 12 , BE = 4 时.
求 ΔDGH 周长的最小值;
②若点 O 是 AC 的中点,是否存在直线 OH 将 ΔACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 1 : 3 .若存在,请求出 AH AF 的值;若不存在,请说明理由.
(本小题满分8分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC和EF的长。
(本小题满分8分)如图,在平行四边形ABCD中,点E、F在对角线BD上,且BE=DF,四边形AECF是平行四边形吗?为什么?
作图题(本小题满分8分)请将下图中的“小鱼”向左平移5格。
(本小题满分8分)已知,求的值
阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点. 例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点. 知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4. (1)数 所表示的点是【M,N】的好点; (2)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?