初中数学

如图,在 ABC 中, AB AC ,点DE分别是ACAB的中点.求证: BD CE

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ADC = B = 90 ° ,过点 D DE AB E ,若 DE = BE

(1)求证: DA = DC

(2)连接 AC DE 于点 F ,若 ADE = 30 ° AD = 6 ,求 DF 的长.

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知:如图, E ABCD 的边 BC 延长线上的一点,且 CE = BC

求证: ΔABC ΔDCE

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知五边形 ABCDE 是正五边形,连接 AC AD .证明: ACD = ADC

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC 的角平分线交 BC 于点 D DE / / AB DF / / AC

(1)试判断四边形 AFDE 的形状,并说明理由;

(2)若 BAC = 90 ° ,且 AD = 2 2 ,求四边形 AFDE 的面积.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图, D E F 分别是 ΔABC 各边的中点,连接 DE EF AE

(1)求证:四边形 ADEF 为平行四边形;

(2)加上条件   后,能使得四边形 ADEF 为菱形,请从① BAC = 90 ° ;② AE 平分 BAC ;③ AB = AC 这三个条件中选择1个条件填空(写序号),并加以证明.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AO BC 于点 O OE AB 于点 E ,以点 O 为圆心, OE 为半径作半圆,交 AO 于点 F

(1)求证: AC O 的切线;

(2)若点 F OA 的中点, OE = 3 ,求图中阴影部分的面积;

(3)在(2)的条件下,点 P BC 边上的动点,当 PE + PF 取最小值时,直接写出 BP 的长.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ACB ECD 恰好为对顶角, ABC = CDE = 90 ° ,连接 BD AB = BD ,点 F 是线段 CE 上一点.

探究发现:

(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD DF .你认为此结论是否成立?    .(填"是"或"否" )

拓展延伸:

(2)将(1)中的条件与结论互换,即: BD DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.

问题解决:

(3)若 AB = 6 CE = 9 ,求 AD 的长.

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图.已知 AB = DC A = D AC DB 相交于点 O ,求证: OBC = OCB

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

问题:如图,在 ΔABD 中, BA = BD .在 BD 的延长线上取点 E C ,作 ΔAEC ,使 EA = EC .若 BAE = 90 ° B = 45 ° ,求 DAC 的度数.

答案: DAC = 45 °

思考:(1)如果把以上“问题”中的条件“ B = 45 ° ”去掉,其余条件不变,那么 DAC 的度数会改变吗?说明理由.

(2)如果把以上“问题”中的条件“ B = 45 ° ”去掉,再将“ BAE = 90 ° ”改为“ BAE = n ° ”,其余条件不变,求 DAC 的度数.

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 E AC 的延长线上, ED AB 于点 D ,若 BC = ED ,求证: CE = DB

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 E ABCD 的边 CD 的中点,连结 AE 并延长,交 BC 的延长线于点 F

(1)若 AD 的长为2,求 CF 的长.

(2)若 BAF = 90 ° ,试添加一个条件,并写出 F 的度数.

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AB = AD = 20 BC = DC = 10 2

(1)求证: ΔABC ΔADC

(2)当 BCA = 45 ° 时,求 BAD 的度数.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

初中数学三角形解答题