如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD , ABCD 是矩形,其对角线 AC , BD 交于点 E ,连接 OE 交 AD 于点 F .
(1)求证: ΔOAF ≅ ΔDAB ;
(2)求 DF AF 的值.
求不等式≥的负整数解。
如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.
在平面直角坐标系xOy中,二次函数y=mx2+(m﹣3)x﹣3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m﹣3)x﹣3(m>0)的图象于N.若只有当﹣2<n<2时,点M位于点N的上方,求这个一次函数的解析式.==
如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这时B″就是AB的黄金分割点.请你证明这个结论.
联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.⑴如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?⑵如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?