小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ∠ ACB 与 ∠ ECD 恰好为对顶角, ∠ ABC = ∠ CDE = 90 ° ,连接 BD , AB = BD ,点 F 是线段 CE 上一点.
探究发现:
(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD ⊥ DF .你认为此结论是否成立? .(填"是"或"否" )
拓展延伸:
(2)将(1)中的条件与结论互换,即: BD ⊥ DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若 AB = 6 , CE = 9 ,求 AD 的长.
如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?
如图,∠1与哪个角是内错角,与哪个角是同旁内角?∠2与哪个角是内错角,与哪个角是同旁内角(只需写一个角)?它们分别是哪两条直线被哪一条直线所截形成的?
如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?
如图,找出图中∠DEA,∠ADE的同位角、内错角和同旁内角.
如图,∠1,∠2,∠3,∠4,∠5,∠6中,同旁内角共有 对.