小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, ∠ ACB 与 ∠ ECD 恰好为对顶角, ∠ ABC = ∠ CDE = 90 ° ,连接 BD , AB = BD ,点 F 是线段 CE 上一点.
探究发现:
(1)当点 F 为线段 CE 的中点时,连接 DF (如图(2) ) ,小明经过探究,得到结论: BD ⊥ DF .你认为此结论是否成立? .(填"是"或"否" )
拓展延伸:
(2)将(1)中的条件与结论互换,即: BD ⊥ DF ,则点 F 为线段 CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若 AB = 6 , CE = 9 ,求 AD 的长.
近年来,有私家车的业主越来越多,某小区为解决“停车难”问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中水平线AB=10m,BD⊥AB,∠BAD=20°,点C在BD上,BC=1m.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.李建认为CD的长度就是限制的高度,而孙杰认为应该以CE的长度作为限制的高度.李建和孙杰谁说的对?请你判断并计算出限制高度.(结果精确到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
某中学为了了解本校八年级女生“一分钟跳绳”项目基础情况,从八年级随机抽取部分女生进行该项目测试,并将测试所得的数据,绘制成如图所示的部分频数分布直方图(从左到右依次分为第一小组,第二小组…第六小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题: (1)补全频数分布直方图. (2)计算在扇形统计图中第一小组对应的扇形的圆心角度数. (3)这次测试成绩的中位数落在第 小组. (4)若测试八年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校八年级女生共有400人,请估算该校八年级女生“一分钟跳绳”成绩为优秀的人数.
“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?
如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2; (1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标; (2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1; (3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.
现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣、…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现.问: (1)第50个数是什么数? (2)把从第1个数开始的前2015个数相加,结果是多少? (3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?