问题:如图,在 ΔABD 中, BA = BD .在 BD 的延长线上取点 E , C ,作 ΔAEC ,使 EA = EC .若 ∠ BAE = 90 ° , ∠ B = 45 ° ,求 ∠ DAC 的度数.
答案: ∠ DAC = 45 ° .
思考:(1)如果把以上“问题”中的条件“ ∠ B = 45 ° ”去掉,其余条件不变,那么 ∠ DAC 的度数会改变吗?说明理由.
(2)如果把以上“问题”中的条件“ ∠ B = 45 ° ”去掉,再将“ ∠ BAE = 90 ° ”改为“ ∠ BAE = n ° ”,其余条件不变,求 ∠ DAC 的度数.
解方程:x2-3x+2=0.
一元二次方程a(x-1)2+b(x-1)+c=0化为一般形式后为2x2-3x-1=0,试求a,b,c的值.
如图,墙壁上的展品最高点与地面的距离PF=3.2 m,最低点与地面的距离QF ="2" m,观赏者的眼睛E 距地面1.6 m.经验表明,当水平视线EH 与过P、Q、E 三点的圆相切于点E 时,视角最大,站在此处观赏最理想.求此时点E 到墙壁的距离EH.
如图,点C、D 分别在∠AOB 的两边上.求作⊙P,使它与OA、OB、CD 都相切(不写作法,保留作图痕迹).
如图,AB 是半圆O 的直径,AD 和BC 是它的两条切线,切点分别为A、B,CO 平分∠BCD. (1)求证:CD是半圆O的切线; (2)若AC=2,BD=3,求AB的长..