初中数学

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,与 y 轴交于 C 点, AC = 10 OB = OC = 3 OA

(1)求抛物线的解析式;

(2)在第二象限内的抛物线上确定一点 P ,使四边形 PBAC 的面积最大,求出点 P 的坐标;

(3)在(2)的结论下,点 M x 轴上一动点,抛物线上是否存在一点 Q ,使点 P B M Q 为顶点的四边形是平行四边形,若存在,请直接写出 Q 点的坐标;若不存在,请说明理由.

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线 y = 1 2 x 2 + 2 x 6 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ,连接 AC BC

(1)求 A B C 三点的坐标并直接写出直线 AC BC 的函数表达式.

(2)点 P 是直线 AC 下方抛物线上的一个动点,过点 P BC 的平行线 l ,交线段 AC 于点 D

①试探究:在直线 l 上是否存在点 E ,使得以点 D C B E 为顶点的四边形为菱形,若存在,求出点 E 的坐标,若不存在,请说明理由;

②设抛物线的对称轴与直线 l 交于点 M ,与直线 AC 交于点 N .当 S ΔDMN = S ΔAOC 时,请直接写出 DM 的长.

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 + 2 bx - 3 b

(1)当该二次函数的图象经过点 A ( 1 , 0 ) 时,求该二次函数的表达式;

(2)在(1)的条件下,二次函数图象与 x 轴的另一个交点为点 B ,与 y 轴的交点为点 C ,点 P 从点 A 出发在线段 AB 上以每秒2个单位长度的速度向点 B 运动,同时点 Q 从点 B 出发,在线段 BC 上以每秒1个单位长度的速度向点 C 运动,直到其中一点到达终点时,两点停止运动,求 ΔBPQ 面积的最大值;

(3)若对满足 x 1 的任意实数 x ,都使得 y 0 成立,求实数 b 的取值范围.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象经过点 A ( 0 , - 7 4 ) ,点 B ( 1 , 1 4 )

(1)求此二次函数的解析式;

(2)当 - 2 x 2 时,求二次函数 y = x 2 + bx + c 的最大值和最小值;

(3)点 P 为此函数图象上任意一点,其横坐标为 m ,过点 P PQ / / x 轴,点 Q 的横坐标为 - 2 m + 1 .已知点 P 与点 Q 不重合,且线段 PQ 的长度随 m 的增大而减小.

①求 m 的取值范围;

②当 PQ 7 时,直接写出线段 PQ 与二次函数 y = x 2 + bx + c ( - 2 x < 1 3 ) 的图象交点个数及对应的 m 的取值范围.

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象与 x 轴交于 A B ( - 3 , 0 ) 两点,与 y 轴交于 C ( 0 , - 3 ) ,对称轴为直线 x = - 1 ,直线 y = - 2 x + m 经过点 A ,且与 y 轴交于点 D ,与抛物线交于点 E ,与对称轴交于点 F

(1)求抛物线的解析式和 m 的值;

(2)在 y 轴上是否存在点 P ,使得以 D E P 为顶点的三角形与 ΔAOD 相似,若存在,求出点 P 的坐标;若不存在,试说明理由;

(3)直线 y = 1 上有 M N 两点 ( M N 的左侧),且 MN = 2 ,若将线段 MN 在直线 y = 1 上平移,当它移动到某一位置时,四边形 MEFN 的周长会达到最小,请求出周长的最小值(结果保留根号).

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c 的图象开口向上,且经过点 A ( 0 , 3 2 ) B ( 2 , - 1 2 )

(1)求 b 的值(用含 a 的代数式表示);

(2)若二次函数 y = a x 2 + bx + c 1 x 3 时, y 的最大值为1,求 a 的值;

(3)将线段 AB 向右平移2个单位得到线段 A ' B ' .若线段 A ' B ' 与抛物线 y = a x 2 + bx + c + 4 a - 1 仅有一个交点,求 a 的取值范围.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + 4 ( a 0 ) x 轴交于点 A ( 1 , 0 ) B ,与 y 轴交于点 C ,对称轴为直线 x = 5 2

(1)求抛物线的解析式;

(2)如图1,若点 P 是线段 BC 上的一个动点(不与点 B C 重合),过点 P y 轴的平行线交抛物线于点 Q ,连接 OQ ,当线段 PQ 长度最大时,判断四边形 OCPQ 的形状并说明理由;

(3)如图2,在(2)的条件下, D OC 的中点,过点 Q 的直线与抛物线交于点 E ,且 DQE = 2 ODQ .在 y 轴上是否存在点 F ,得 ΔBEF 为等腰三角形?若存在,求点 F 的坐标;若不存在,请说明理由.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + 4 x 经过坐标原点,与 x 轴正半轴交于点 A ,点 M ( m , n ) 是抛物线上一动点.

(1)如图1,当 m > 0 n > 0 ,且 n = 3 m 时,

①求点 M 的坐标;

②若点 B ( 15 4 y ) 在该抛物线上,连接 OM BM C 是线段 BM 上一动点(点 C 与点 M B 不重合),过点 C CD / / MO ,交 x 轴于点 D ,线段 OD MC 是否相等?请说明理由;

(2)如图2,该抛物线的对称轴交 x 轴于点 K ,点 E ( x , 7 3 ) 在对称轴上,当 m > 2 n > 0 ,且直线 EM x 轴的负半轴于点 F 时,过点 A x 轴的垂线,交直线 EM 于点 N G y 轴上一点,点 G 的坐标为 ( 0 , 18 5 ) ,连接 GF .若 EF + NF = 2 MF ,求证:射线 FE 平分 AFG

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + 3 2 x + 4 与两坐标轴分别相交于 A B C 三点.

(1)求证: ACB = 90 °

(2)点 D 是第一象限内该抛物线上的动点,过点 D x 轴的垂线交 BC 于点 E ,交 x 轴于点 F

①求 DE + BF 的最大值;

②点 G AC 的中点,若以点 C D E 为顶点的三角形与 ΔAOG 相似,求点 D 的坐标.

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,直线 y = 1 2 x + 3 2 分别交 x 轴、 y 轴于点 A B ,过点 A 的抛物线 y = x 2 + bx + c x 轴的另一交点为 C ,与 y 轴交于点 D ( 0 , 3 ) ,抛物线的对称轴 l AD 于点 E ,连接 OE AB 于点 F

(1)求抛物线的解析式;

(2)求证: OE AB

(3) P 为抛物线上的一动点,直线 PO AD 于点 M ,是否存在这样的点 P ,使以 A O M 为顶点的三角形与 ΔACD 相似?若存在,求点 P 的横坐标;若不存在,请说明理由.

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c ( a > 0 )

(1)若 a = 1 2 b = c = - 2 ,求方程 a x 2 + bx + c = 0 的根的判别式的值;

(2)如图所示,该二次函数的图象与 x 轴交于点 A ( x 1 0 ) B ( x 2 0 ) ,且 x 1 < 0 < x 2 ,与 y 轴的负半轴交于点 C ,点 D 在线段 OC 上,连接 AC BD ,满足 ACO = ABD - b a + c = x 1

①求证: ΔAOC ΔDOB

②连接 BC ,过点 D DE BC 于点 E ,点 F ( 0 , x 1 - x 2 ) y 轴的负半轴上,连接 AF ,且 ACO = CAF + CBD ,求 c x 1 的值.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = 2 ( x - m ) 2 + 2 m ( m 为常数)的顶点为 A

(1)当 m = 1 2 时,点 A 的坐标是   ,抛物线与 y 轴交点的坐标是   

(2)若点 A 在第一象限,且 OA = 5 ,求此抛物线所对应的二次函数的表达式,并写出函数值 y x 的增大而减小时 x 的取值范围;

(3)当 x 2 m 时,若函数 y = 2 ( x - m ) 2 + 2 m 的最小值为3,求 m 的值;

(4)分别过点 P ( 4 , 2 ) Q ( 4 , 2 - 2 m ) y 轴的垂线,交抛物线的对称轴于点 M N .当抛物线 y = 2 ( x - m ) 2 + 2 m 与四边形 PQNM 的边有两个交点时,将这两个交点分别记为点 B 、点 C ,且点 B 的纵坐标大于点 C 的纵坐标.若点 B y 轴的距离与点 C x 轴的距离相等,直接写出 m 的值.

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + 4 x 经过坐标原点,与 x 轴正半轴交于点 A ,点 M ( m , n ) 是抛物线上一动点.

(1)如图1,当 m > 0 n > 0 ,且 n = 3 m 时,

①求点 M 的坐标;

②若点 B ( 15 4 y ) 在该抛物线上,连接 OM BM C 是线段 BM 上一动点(点 C 与点 M B 不重合),过点 C CD / / MO ,交 x 轴于点 D ,线段 OD MC 是否相等?请说明理由;

(2)如图2,该抛物线的对称轴交 x 轴于点 K ,点 E ( x , 7 3 ) 在对称轴上,当 m > 2 n > 0 ,且直线 EM x 轴的负半轴于点 F 时,过点 A x 轴的垂线,交直线 EM 于点 N G y 轴上一点,点 G 的坐标为 ( 0 , 18 5 ) ,连接 GF .若 EF + NF = 2 MF ,求证:射线 FE 平分 AFG

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 y = a x 2 + bx 4 x 轴于 A ( 1 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C

(1)求该抛物线的表达式;

(2)点 P 为第四象限内抛物线上一点,连接 PB ,过点 C CQ / / BP x 轴于点 Q ,连接 PQ ,求 ΔPBQ 面积的最大值及此时点 P 的坐标;

(3)在(2)的条件下,将抛物线 y = a x 2 + bx 4 向右平移经过点 ( 1 2 0 ) 时,得到新抛物线 y = a 1 x 2 + b 1 x + c 1 ,点 E 在新抛物线的对称轴上,在坐标平面内是否存在一点 F ,使得以 A P E F 为顶点的四边形为矩形,若存在,请写出点 F 的坐标;若不存在,请说明理由.

参考:若点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,则线段 P 1 P 2 的中点 P 0 的坐标为 ( x 1 + x 2 2 y 1 + y 2 2 )

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + 3 2 x + c x 轴交于点 A B ,与 y 轴交于点 C ,已知 A C 两点坐标分别是 A ( 1 , 0 ) C ( 0 , 2 ) ,连接 AC BC

(1)求抛物线的表达式和 AC 所在直线的表达式;

(2)将 ΔABC 沿 BC 所在直线折叠,得到 ΔDBC ,点 A 的对应点 D 是否落在抛物线的对称轴上,若点 D 在对称轴上,请求出点 D 的坐标;若点 D 不在对称轴上,请说明理由;

(3)若点 P 是抛物线位于第三象限图象上的一动点,连接 AP BC 于点 Q ,连接 BP ΔBPQ 的面积记为 S 1 ΔABQ 的面积记为 S 2 ,求 S 1 S 2 的值最大时点 P 的坐标.

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题