初中数学

已知二次函数 y = - x 2 + 6 x - 5

(1)求二次函数图象的顶点坐标;

(2)当 1 x 4 时,函数的最大值和最小值分别为多少?

(3)当 t x t + 3 时,函数的最大值为 m ,最小值为 n ,若 m - n = 3 ,求 t 的值.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx + c ( a b c 为常数)开口向下且过点 A ( 1 , 0 ) B ( m 0 ) ( - 2 < m < - 1 ) ,下列结论:① 2 b + c > 0 ;② 2 a + c < 0 ;③ a ( m + 1 ) - b + c > 0 ;④若方程 a ( x - m ) ( x - 1 ) - 1 = 0 有两个不相等的实数根,则 4 ac - b 2 < 4 a .其中正确结论的个数是 (    )

A.

4

B.

3

C.

2

D.

1

来源:2021年湖北省荆门市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面 OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽 OA = 8 m ,桥拱顶点 B 到水面的距离是 4 m

(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;

(2)一只宽为 1 . 2 m 的打捞船径直向桥驶来,当船驶到桥拱下方且距 O 0 . 4 m 时,桥下水位刚好在 OA 处,有一名身高 1 . 68 m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).

(3)如图③,桥拱所在的函数图象是抛物线 y = a x 2 + bx + c ( a 0 ) ,该抛物线在 x 轴下方部分与桥拱 OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移 m ( m > 0 ) 个单位长度,平移后的函数图象在 8 x 9 时, y 的值随 x 值的增大而减小,结合函数图象,求 m 的取值范围.

来源:2021年贵州省贵阳市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + mx 与直线 y = - x + b 相交于点 A ( 2 , 0 ) 和点 B

(1)求 m b 的值;

(2)求点 B 的坐标,并结合图象写出不等式 x 2 + mx > - x + b 的解集;

(3)点 M 是直线 AB 上的一个动点,将点 M 向左平移3个单位长度得到点 N ,若线段 MN 与抛物线只有一个公共点,直接写出点 M 的横坐标 x M 的取值范围.

来源:2021年河南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax + 3 ( a 0 )

(1)求抛物线的对称轴;

(2)把抛物线沿 y 轴向下平移 3 | a | 个单位,若抛物线的顶点落在 x 轴上,求 a 的值;

(3)设点 P ( a , y 1 ) Q ( 2 , y 2 ) 在抛物线上,若 y 1 > y 2 ,求 a 的取值范围.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,直线 y = 1 2 x + 2 B C 两点,连接 AC

(1)求抛物线的解析式;

(2)求证: ΔAOC ΔACB

(3)点 M ( 3 , 2 ) 是抛物线上的一点,点 D 为抛物线上位于直线 BC 上方的一点,过点 D DE x 轴交直线 BC 于点 E ,点 P 为抛物线对称轴上一动点,当线段 DE 的长度最大时,求 PD + PM 的最小值.

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 2 x 3 x 轴交于 A B 两点(点 A 在点 B 的左侧)与 y 轴交于点 C ,点 D ( 4 , y ) 在抛物线上, E 是该抛物线对称轴上一动点,当 BE + DE 的值最小时, ΔACE 的面积为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

直线 l 过点 ( 0 , 4 ) 且与 y 轴垂直,若二次函数 y = ( x - a ) 2 + ( x - 2 a ) 2 + ( x - 3 a ) 2 - 2 a 2 + a (其中 x 是自变量)的图象与直线 l 有两个不同的交点,且其对称轴在 y 轴右侧,则 a 的取值范围是 (    )

A.

a > 4

B.

a > 0

C.

0 < a 4

D.

0 < a < 4

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 2 x 3 x 轴交于 A B 两点(点 A 在点 B 的左侧)与 y 轴交于点 C ,点 D ( 4 , y ) 在抛物线上, E 是该抛物线对称轴上一动点,当 BE + DE 的值最小时, ΔACE 的面积为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知直线 l 1 : y = - 2 x + 10 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A B 两点,交 x 轴于另一点 C BC = 4 ,且对于该二次函数图象上的任意两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,当 x 1 > x 2 5 时,总有 y 1 > y 2

(1)求二次函数的表达式;

(2)若直线 l 2 : y = mx + n ( n 10 ) ,求证:当 m = - 2 时, l 2 / / l 1

(3) E 为线段 BC 上不与端点重合的点,直线 l 3 : y = - 2 x + q 过点 C 且交直线 AE 于点 F ,求 ΔABE ΔCEF 面积之和的最小值.

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知在平面直角坐标系 xOy 中,抛物线 y = - x 2 + bx + c ( c > 0 ) 的顶点为 D ,与 y 轴的交点为 C .过点 C 的直线 CA 与抛物线交于另一点 A (点 A 在对称轴左侧),点 B AC 的延长线上,连结 OA OB DA DB

(1)如图1,当 AC / / x 轴时,

①已知点 A 的坐标是 ( - 2 , 1 ) ,求抛物线的解析式;

②若四边形 AOBD 是平行四边形,求证: b 2 = 4 c

(2)如图2,若 b = - 2 BC AC = 3 5 ,是否存在这样的点 A ,使四边形 AOBD 是平行四边形?若存在,求出点 A 的坐标;若不存在,请说明理由.

来源:2020年浙江省湖州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知二次项系数等于1的一个二次函数,其图象与 x 轴交于两点 ( m , 0 ) ( n , 0 ) ,且过 A ( 0 , b ) B ( 3 , a ) 两点 ( b a 是实数),若 0 < m < n < 2 ,则 ab 的取值范围是 (    )

A.

0 < ab < 41 8

B.

0 < ab < 19 8

C.

0 < ab < 81 16

D.

0 < ab < 49 16

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ( a b c 是常数,且 a 0 ) 的自变量 x 与函数值 y 的部分对应值如下表:

x

- 1

0

1

2

y

m

2

2

n

且当 x = 3 2 时,对应的函数值 y < 0 .有以下结论:

abc > 0 ;② m + n < - 20 3 ;③关于 x 的方程 a x 2 + bx + c = 0 的负实数根在 - 1 2 和0之间;④ P 1 ( t - 1 , y 1 ) P 2 ( t + 1 , y 2 ) 在该二次函数的图象上,则当实数 t > 1 3 时, y 1 > y 2

其中正确的结论是 (    )

A.

①②

B.

②③

C.

③④

D.

②③④

来源:2021年湖北省黄石市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 ( 3 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ,对称轴 l x 轴交于点 F ,直线 m / / AC ,点 E 是直线 AC 上方抛物线上一动点,过点 E EH m ,垂足为 H ,交 AC 于点 G ,连接 AE EC CH AH

(1)抛物线的解析式为   

(2)当四边形 AHCE 面积最大时,求点 E 的坐标;

(3)在(2)的条件下,连接 EF ,点 P x 轴上一动点,在抛物线上是否存在点 Q ,使得以 F E P Q 为顶点,以 EF 为一边的四边形是平行四边形.若存在,请直接写出点 Q 的坐标;若不存在,说明理由.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题