已知直线 l 1 : y = - 2 x + 10 交 y 轴于点 A ,交 x 轴于点 B ,二次函数的图象过 A , B 两点,交 x 轴于另一点 C , BC = 4 ,且对于该二次函数图象上的任意两点 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) ,当 x 1 > x 2 ⩾ 5 时,总有 y 1 > y 2 .
(1)求二次函数的表达式;
(2)若直线 l 2 : y = mx + n ( n ≠ 10 ) ,求证:当 m = - 2 时, l 2 / / l 1 ;
(3) E 为线段 BC 上不与端点重合的点,直线 l 3 : y = - 2 x + q 过点 C 且交直线 AE 于点 F ,求 ΔABE 与 ΔCEF 面积之和的最小值.
2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.
(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?
(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?
如图,AC是▱ABCD的对角线, ∠ BAC = ∠ DAC .
(1)求证: AB = BC ;
(2)若 AB = 2 , AC = 2 3 ,求▱ABCD的面积.
为积极响应市委政府“加快建设天蓝•水碧•地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:
请根据所给信息解答以下问题:
(1)这次参与调查的居民人数为: ;
(2)请将条形统计图补充完整;
(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;
(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?
已知抛物线 y = a ( x - 1 ) 2 - 3 ( a ≠ 0 ) 的图象与y轴交于点 A ( 0 ,﹣ 2 ) ,顶点为B.
(1)试确定a的值,并写出B点的坐标;
(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;
(3)试在x轴上求一点P,使得△PAB的周长取最小值;
(4)若将抛物线平移 m ( m ≠ 0 ) 个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.
如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且 ∠ BAC = ∠ CAD .
(1)求证:直线MN是⊙O的切线;
(2)若 CD = 3 , ∠ CAD = 30 ° ,求⊙O的半径.