如图,已知在平面直角坐标系 xOy 中,抛物线 y = - x 2 + bx + c ( c > 0 ) 的顶点为 D ,与 y 轴的交点为 C .过点 C 的直线 CA 与抛物线交于另一点 A (点 A 在对称轴左侧),点 B 在 AC 的延长线上,连结 OA , OB , DA 和 DB .
(1)如图1,当 AC / / x 轴时,
①已知点 A 的坐标是 ( - 2 , 1 ) ,求抛物线的解析式;
②若四边形 AOBD 是平行四边形,求证: b 2 = 4 c .
(2)如图2,若 b = - 2 , BC AC = 3 5 ,是否存在这样的点 A ,使四边形 AOBD 是平行四边形?若存在,求出点 A 的坐标;若不存在,请说明理由.
如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?
如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,求线段CD的长.
如图所示,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,若AB=17,BD=12,(1)求证:△BCD≌△ACE;(2)求DE的长度.
如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.求证:△ACD≌△BCE.
如图,已知:AB=CB,AD=CD,求证:∠A=∠C.