如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a ≠ 0 ) 与 x 轴交于点 A ( - 1 , 0 ) , B ( 4 , 0 ) ,与 y 轴交于点 C .
(1)求该抛物线的解析式;
(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA , PD ,求 ΔPAD 面积的最大值.
(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a ≠ 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F 为 y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D , E , F , G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.
(本题满分7分) 如图6,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分线交AB于点D,以D为圆心的⊙O与AC相切于点D. (1)求证: ⊙0与BC相切; (2)当AC=2时,求⊙O的半径,
在如图5所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立平面直角坐标系 (1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1 ,C1对应; (2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形 为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应; (3)填空:在(2)中,设原△ABC的外心为M1,△A2B2C2的外心为M2,M1与M2之间的距离为__
(本题满分6分)解方程: +x-4=0.
(本题满分6分)-(-1)°-+
已知抛物线y=-x2+mx-m+2. (Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=,试求m的值; (Ⅱ)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且 △MNC的面积等于27,试求m的值