首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 193

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

登录免费查看答案和解析

如图,在平面直角坐标系中,抛物线yax2bx4(a≠0)与x