已知二次函数 y = - x 2 + 6 x - 5 .
(1)求二次函数图象的顶点坐标;
(2)当 1 ⩽ x ⩽ 4 时,函数的最大值和最小值分别为多少?
(3)当 t ⩽ x ⩽ t + 3 时,函数的最大值为 m ,最小值为 n ,若 m - n = 3 ,求 t 的值.
如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(取≈1.73,计算结果保留整数)
如图,方格纸中的每个小正方形边长都是1个单位长度,Rt△ABC的顶点均在格点上.建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A1B2C2,试在图中画出Rt△A1B2C2,并计算Rt△A1B1C1在上述旋转过程点C1所经过的路径长.
先化简,再求值:,其中a= -1
如图,已知抛物线过点A(6,0),B(-2,0),C(0,-3). (1)求此抛物线的解析式; (2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积; (3)若点Q在轴上,点G为该抛物线的顶点,且∠QGA=45º,求点Q的坐标.
如图,AB是⊙O的直径,直线与⊙O相切于点C,AE⊥交直线于点E、交⊙O于点F,BD⊥交直线于点D.(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;(3)若AC=8,BC=6,点P从点A出发沿线段AB向点B以2的速度运动,点Q从点B出发沿线段BC向点C以1的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时间为秒,求当为何值时,△BPQ为等腰三角形?